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Frequency Range, logE, logP and Magnitude
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Abstract

The potency and energy range of seismic events that a system can recover is limited
by its frequency range (f1, f2), which is mainly determined by the capabilities of seismic
sensors. In hard rock with vS = 3.6 km/s and µ = 30 GPa the largest event for which we
can recover 85% of seismic potency is P ' 7.41∆σ/(10f1)3, which for ∆σ = 3 MPa and f1 =
3 Hz gives logP=2.9. The smallest event for which we can recover 85% of radiated energy
is P ' 100∆σ/f3

2 , which for f2 = 1 kHz gives logP=−0.5. While 15% underestimates of
seismic potency do not have a significant effect on potency or energy based magnitudes, it
has a notable effect on the apparent stress and the apparent volume. The problem may
be alleviated by partially correcting for the limited bandwidth, but the best strategy is to
select the correct sensors.
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Figure 1: Expected S-wave corner frequency and
source radius as a function of logP for different strain
drops and rock type (after Mountfort and Mendecki,
1997).

The most appropriate measure of the
strength of a seismic source is the radiated
seismic energy since it controls the high
frequency radiation and drives strong
ground motion. Therefore E, or logE,
should be the base of a magnitude scale,
as originally intended by Gutenberg and
Richter (1956a), mS = 2/3logE − 3.2,
where mS is the surface wave magnitude
of larger earthquakes. The Gutenberg
and Richter relation was later corrected
by Choy and Boatwright (1995) who
calculated the radiated energy from the
velocity spectra of 397 earthquakes with
m ≥ 5.8 and, assuming the constant
slope of 2/3, obtained me = 2/3logE − 2.9.
That indicates that the Gutenberg-Richter
formula may overestimate the radiated
energy by a factor of 2.5 on average.
The energy measure of the strength of
an earthquake, K=logE, was adopted in
Russia (Rautian, 1960) and then in Polish
coal mines (Gibowicz, 1963, Wierzchowska
and Dubinski, 1973).

The routine estimation of seismic energy from waveforms is demanding. It requires
triaxial recordings and the integration of the energy flux of the velocity squared spectra of
body waves over the duration of the source process and corrections for the effects of geometric
spreading, attenuation, radiation pattern and site. It requires far-field recordings over a
wide frequency range, preferably from 0.2f0 to 10f0, where f0 is the corner frequency of the
displacement spectrum, see Figure 2 and 3.
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Figure 2: log-log graphs of the theoretical displacement spectrum (top left) and velocity spectrum (top
right) for the ω2-model (black solid line), ω1.5 (grey dashed) and ω3 (black dashed) for a logP=1.2 event
and f0 = 20 Hz. The bottom left and right show the first 100 Hz of these spectra in a linear scale to
demonstrate their asymmetry.

The rate of seismic activity in mines does not always allow for careful, time consuming
processing with proper corrections for attenuation and site effects, which are notoriously
difficult at higher frequencies, specifically in mines where rock mass properties are being
altered. Most of the seismic energy is radiated at frequencies above f0 and for small events
the higher frequencies may be filtered out by sensors. Also, due to the limited aperture
of mine seismic networks, spectra of larger events recorded by sensors close to sources are
contaminated by the near or intermediate fields of seismic radiation.

Seismic potency of a single dislocation source is the product of an average slip and source
area, P = ūA (Ben-Menahem and Singh, 1981). For a complex source, potency is the product
of the source strain and the source volume, P = ∆εV (Madariaga, 1979), where ∆ε = ∆σ/µ,
∆σ is an averaged stress drop and µ is the rigidity of the rock mass surrounding the source.
Seismic moment M = µP = µ∆εV = ∆σV .

Assuming the relation between the S-wave corner frequency, f0, S-wave velocity, vS , and
source radius, r = 0.3vS/f0, (Brune et al., 1979), and that P = 16∆εr3/7 (Eshelby, 1957;
Keilis-Borok, 1959), we can derive the following simple relation

f0 = 0.395 (∆ε/P )
1/3

. (1)

Since vS = (µ/ρ)
1/2 one can construct a nomogram, see Figure 1, representing the relations

between these variables for hard rocks, defined here by µ = 37 GPa, ρ = 2700 kg/m3 and vS
= 3700 m/s (top of the band) and for soft rocks by µ = 7.2 GPa, ρ = 1800 kg/m3 and vS = 2000
m/s (bottom of the band).

Seismic potency is a parameter that is observable at the low frequency asymptote of the
displacement spectrum where corrections for attenuation and scattering are less difficult
and, as a result, its estimate is less uncertain than that of seismic energy. An average
uncertainties in routine estimates of seismic potency are less than 50%, while they can be
over 80% for seismic energy. A simple solution for magnitude then, at least in hard rock
mines, is to utilise one of the moment or potency based magnitude relations, see Table 1.
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Table 1: Moment magnitudes relations recalculated to potency for µ = 30 GPa.

Author Domain of validity Equation

Wyss and Brune (1968) 3 < m < 6 m = 0.59 logP + 1.4
Aki (1969) 3 < m < 5 m = 2/3 logP + 1.12
Gibowicz (1975) m < 4.5 m = logP + 0.32
Bakun and Lindh (1977) m < 3.5 m = 0.83 logP + 0.4
Hanks and Kanamori (1979) 3 < m < 7.5 mHK = 2/3 logP + 0.92
Ben-Zion and Zhu (2002) m < 3.5 m = logP + 0.72

The most frequently used moment-magnitude is the Hanks and Kanamori (1979) relation,
which for seismic potency gives mHK = 2/3 logP + 0.92. The mHK is consistent with the
Gutenberg and Richter empirical relation between seismic energyE and themS for intermediate
and larger earthquakes. It assumes a constant apparent stress σA = E/P = 1.5 MPa, which
implies a slope of 1.0 on the logE vs logP plot. For σA = 1.5 MPa the Boatwright and
Choy formula translates to potency magnitude as me = 2/3logP + 1.2. Note that for small
earthquakes m ∼ logP as opposed to m ∼ 2/3 logP , see also Kanamori and Anderson, 1975.

The potency and energy range of seismic events that a system can recover is limited by its
frequency range (f1, f2), which is mainly determined by the capabilities of seismic sensors.
Figure 3 (left) shows the recovery of seismic potency as a function of the ratio of available
frequencies at the lower end of the spectrum f1, to corner frequency f0 for ωn-models, n = 1.5,
2 and 3, where the displacement spectrum is

u (n, f) =
Ω0

1 + (f/f0)
n , (2)

where Ω0 is the zero frequency limit of the displacement spectrum. The displacement power
spectrum is Pu (n) = 2

∫∞
0

[u (n, f)]
2
df = 2πΩ2

0f0 (n− 1) /
[
n2 sin (π/n)

]
. The potency recovery

then can be defined as P (f = f1)/P (f = 0).
For the conventional ω2-model, i.e. n = 2, it shows that at 0.2f0 we can recover 96%, at

0.42f0 85% and at the corner frequency only 50% of seismic potency respectively. Assuming a
circular source with stress drop ∆σ = (7µP )/

(
16r3

)
(Keilis-Borok, 1959), corner frequency f0

= 0.3vS/r (Brune et al., 1979) and hard rock with vS = 3600 m/s and µ = 30 GPa, the potency
P = 0.1∆σ/f30 . Therefore, the largest event for which we can recover 85% of seismic potency
is P ' 7.41∆σ/(10f1)

3, which for ∆σ = 3 MPa and f1 = 4.5 Hz is logP=2.39 and for f1 = 3 Hz
is logP=2.92. The 85% recovery underestimates logP by log (0.85P ) = logP − 0.07, and the
mHK by 0.047. At 50% recovery, i.e. f1/f0 = 1.0 the logP is underestimated by 0.3 units and
the mHK by 0.2.
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Figure 3: Recovery of seismic potency as a function of f1/f0 (left) and radiated energy
E (0.2f0, f2)/E (f1 = 0,∞) as a function of f2/f0 (right) for the ω2-model (thick solid line), the ω1.5 (grey
dashed) and the ω3 (black dashed). To secure a finite energy the recovery for the ω1.5-model is defined
as E (0.2f0, f2)/E (f1 = 0.01f0, f2 = 100f0). The large black dots on the ω2-model indicate particular
recoveries of potency and energy.
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Seismic radiated energy is proportional to the velocity power spectrum

E ∼ Pv (n) = 2

∞∫
0

[u̇ (n, f)]
2
df = 2

∞∫
0

[
2πfΩ0

1 + (f/f0)
n

]2
df =

(2πf0)
3

Ω2
0 (n− 3)

n2 sin (3π/n)
(3)

Note that for n ≤ 1.5 the integral defining Pv (n = 1.5) diverges. The predominant frequency
at which the maximum energy is radiated fE , is at the maximum of the velocity power
spectrum. Taking ∂u̇ (n, f)/∂f = 0 and solving for f gives

fE (n) =
1

(n− 1)
1/n
· f0 (4)

Therefore for the ω2-model the predominant frequency is at the corner frequency, fE (2) = f0.
For the ω3-model the fE (3) = f0/

3
√

2 = 0.7937f0 and the fE (1.5) = 1.587f0, see Figure 4 (left).
The limn→1 fE (n) =∞ and the limn→∞ fE (n) = 1.
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Figure 4: Predominant frequency as a function of the corner frequency for ωn-models (left) and the
ratio of the maximum amplitude of the ωn-model to the ω2 one (right).

Inserting fE (n) into u̇ (n, f) gives the maximum amplitude of the velocity spectrum and
the ratio of the maximum amplitude of the ωn-model to the ω2 one

u̇ (n) =
2πf0Ω0

n
(n− 1)

n−1
n u̇ (n) /u̇ (2) =

2

n
(n− 1)

n−1
n , (5)

see Figure 4 (right) and Figure 2 (bottom right). The limn→∞ [u̇ (n) /u̇ (2)] = 2 and limn→1 [u̇ (n) /u̇ (2)]
= 2.

The energy recovery defined as E (f1, f2)/E (f1 = 0, f2 =∞) for the ω2-model gives

E (f1, f2) /E (f1 = 0, f2 =∞) = 2 (B +A) /π, (6)

whereB = (f1/f0)/
[
1 + (f1/f0)

2
]
− (f2/f0) /

[
1 + (f2/f0)

2
]

andA= arctan (f2/f0)− arctan (f1/f0)

(see also Di Bona and Rovelli, 1988).
Figure (3) (right) shows that the ω2-model produces 18% of energy below the corner frequency

(left of f2/f0=1), the ω1.5-model less than 10% while the ω3 almost 50%. The energy recovery
at Figure 3 (right) is calculated for f1 = 0.2f0 and f2 varying from 0.2f0 (0% recovery) to 10f0
(87% recovery). Therefore for ω2-model the smallest event for which we can recover at least
85% of energy is P ' 0.1∆σ/(f2/10)

3, which for ∆σ = 3 MPa and f2 = 1000 Hz is logP=−0.5.
Figure 5 shows the maximum log P for which we can measure 85% of potency as a function

of f1, and the minimum logP for which we can measure at least 85% of radiated energy as a
function of f2.
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Figure 5: The maximum logP for which we can measure at least 85% of seismic potency as a function
of f1 (left), and the minimum logP for which we can measure at least 85% of seismic energy as a function
of f2 (right), both for the ω2-model. Typical sensor characteristics are marked by dots.

While the underestimation of seismic potency does not have a significant effect on the
potency based magnitude, it has a notable effect on the estimation of the apparent stress
and the apparent volume, VA = µP 2/E (Mendecki, 1993). Figure 6 illustrates the influence
of the limited frequency range of four hypothetical sensors on the estimation of σA and VA.
The problem may be alleviated by correcting for the limited bandwidth while calculating the
displacement and velocity power spectra. Equations (2) and (6) are functions of f0 which is
also affected by bandwidth limitations and needs to be corrected (Mendecki and Niewiadomski,
1997). Corner frequency can be derived from the ratio Pv (n)/Pu (n) and therefore is f0 (n)
=
√
C (n)Pv (n) /Pu (n)/(2π), where C (n) = [(n− 1) sin (3π/n)]/ [(n− 3) sin (π/n)]. Note that

f0 (n)/f0 (n = 2) = 1, which means that the corner frequency is the same for any n.
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Figure 6: Over (> 1) and under-estimates (< 1) of σA (left) and VA (right) as a function of f0 for the
ω2-model for selected sensors defined by (f1, f2) [Hz]: 3 to 1000 (G3 – blue solid line), 14 to 1000 (G14 –
blue dashed), 0.7 to 1500 (A0.7 – red solid) and 5 to 2300 (A5 – red dashed).

The ω2-model gives f0 (n = 2) =
√
Pv (n = 2) /Pu (n = 2)/(2π), see Andrews (1986). The

recovery ratio for the ω2-model is

f0 (f1, f2) /f0 (f1 = 0, f2 =∞) =
√

1 + (B/A), (7)

where f0 in A and B is calculated within the restricted frequency range (f1, f2), see Figure
7. The best strategy though is to select the correct sensors for the range of potencies and
energies to be recorded.

Seismic events occurring in mines are relatively small and the bulk of them are not
recorded by the regional or national seismological networks that routinely estimate the local
magnitude mL. However, if there is a sufficient overlap between the mine and the national
network one can calibrate parameters c1, c2 and c3 in mL = c1logE + c2logP + c3, to convert
potencies and energies observed by the mine network to the mL scale.

The 8th Rockburst and Seismicity in Mines Symposium, Russia, 2013
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f0 for the ω2-model due to sensor bandwidth limits
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solid) and 5 to 2300 (A5 – red dashed).

Here, poor recovery of seismic potency
at low frequencies is partly compensated
by better recovery of energy at higher
frequencies. Such a calibration was done
by Butler (1992), also reported by Butler
and van Aswegen (1993) for the ISS system
in South Africa and then re-evaluated by
Stankiewicz and Essrich (2004). A quick
survey of 100 mines in 12 countries revealed
that 74 of them in 6 countries use the local
magnitude defined by (c1, c2, c3) for South
African gold mines and the rest use the
Hanks and Kanamori relation.

If the radiated seismic energy can be
estimated reliably then logE is the most
appropriate measure of the strength of a
seismic source and it should be used for
seismic hazard assessment in mines. The
second best option for hard rock mines is
logP . However, slow events in soft rock
mines would result in larger potency magnitudes but be hardly perceptible because they
would radiate little energy and produce low ground motion. Even in hard rock mines sources
of seismic events associated with weaker geological features or with softer patches of rock
yield more slowly under lower driving stresses and radiate over 100 times less seismic
energy per unit of inelastic co-seismic deformation than equivalent sources associated with
competent rock, see Figure 1.1 in Mendecki (1993).

logP can be converted to an energy magnitude assuming an average apparent stress for
seismic events in mines, say 0.5 MPa, which gives mE = logE − 5.7. The energy magnitude,
mE , offers similar estimates to local magnitudes for larger seismic events in mines, but lower
estimates for slower, less damaging events, see Table 2. For example event 870310 with
local magnitude mL1.4 radiated 16 times more energy than event 870131 with mL1.5, and
event 59 with mHK−2.3 radiated 55 times more energy than event 94 with mHK−2.4. These
differences are reflected in the energy based magnitudes.

All three, logE, logP and mE = logE − 5.7, maintain the appropriate scaling for small
earthquakes, are simple, independent of rigidity and easy to rescale to other potency or
energy based relations, therefore one can objectively compare seismic hazard between different
mines.

Table 2: Source parameters and magnitude comparison for 10 well processed events. The
first three are listed by Gibowicz (1982), 4 and 5 by McGarr (1994), 6, 7 and 8 by Gibowicz
et al. (1990) and 9 and 10 by Gibowicz et al. (1991).

No. Event µ, GPa logE logP σA, MPa mL mHK me mE

1 BLC 15.7 10.64 5.16 0.30 4.6 4.4 4.2 4.9
2 LBN 17.9 10.44 5.04 0.25 4.5 4.3 4.0 4.7
3 BTM-1 17.5 10.07 4.53 0.35 4.3 3.9 3.8 4.4
4 HBF-1 37.5 9.44 3.33 1.30 - 3.1 3.4 3.7
5 HBF-1a 37.5 8.85 2.86 1.00 - 2.8 3.0 3.1
6 870310 12.3 6.46 1.16 0.20 1.4 1.5 1.4 0.8
7 870112 12.3 6.37 1.29 0.12 1.5 1.7 1.4 0.7
8 870131 12.3 5.25 1.25 0.01 1.5 1.5 0.6 −0.4
9 59 30.6 1.50 −4.88 2.40 - −2.3 −1.9 −4.2

10 94 30.6 −0.24 −5.08 0.69 - −2.4 −3.1 −5.9
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